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1 Introduction

There are a number of reasons why phenotypical diversity may arise despite clonal genetics. Many

of these are due to fluctuations in the environment–cells nearer to nutrient sources grow faster;

those subjected to heat, light or other inputs will respond accordingly; and so on. But even cells

in carefully controlled, homogenous environments can exhibit diversity, and a strong component

of this diversity arises from the rare and discrete nature of genes and molecules involved in gene

regulation. In particular, many genes have only one or two copies per cell and may be inactive

for large portions of the cell cycle. The times at which these genes turn on or off depend upon

many random or chaotic events, such as thermal motion, molecular competitions, and upstream

fluctuations.

To illustrate how diversity may arise despite identical genetics and initial conditions, Fig. 1 shows

a cartoon of a simple gene regulatory system. At the initial time (Fig. 1A), the cell could have a

single copy of an important gene, such as gfp (green fluorescent protein) and a single copy of an

unstable activator molecule, A. The dynamics of the process is a race–will A bind and activate g

first (Fig. 1C), or will A degrade before it has a chance to bind (Fig. 1B)? Although real biological

systems are far more complex than this toy cartoon, the principles remain the same: genes may be
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active or inactive simply due to a chance reaction with another molecule. Regulatory molecules may

undergo many different reactions (degradation, dimerization, folding, etc...), which may impede or

help them to bind to the proper gene regulatory site. Smaller copy numbers typically result in

more variable responses, as a single molecule events represent a much higher relative change. In

particular, with one gene copy, switches can be all-or-nothing; with more copies, the response can

be much more graded.
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Figure 1: Cartoon depiction of stochastic gene regulation. Panel A: The cell begins with a single gene and a single,
unstable activator protein (A). Panel B: Through a chance event, the activator molecule degrades, and the gene
remains inactive. Panel C: through a different chance event, the activator may bind and activate the gene making
the cell active.

Once rarity and discreteness causes variability to arise in a single gene or regulatory molecule, it

can affect the system’s downstream elements as the products of one gene activate or repress another

[1, 2, 3, 4, 5, 6, 7]. How the system survives and even exploits this variability depends upon the

mechanisms of the underlying gene regulatory network. In many cases, variability is undesirable,

in which case evolution will have favored mechanisms that diminish the level of variability. For

example, negative feedback (especially auto-regulation) mechanisms can reduce variability for a

given mean level signal [8, 9, 10], and such auto-regulatory mechanisms are present in about 40%

of the transcription factors in E. coli [11]. Section 5.1 considers a model of gene transcription and

translation in which a protein represses the activation of it’s own gene. This auto-regulation enables

the system to exhibit less variability for the same mean level of expression. In another context,

dynamics in one part of a regulatory network can help to filter out certain fluctuation frequencies

coming from other sources via low-pass or band-pass filters [12, 13]. For example, the simple system

examined in Section 5.2 acts as a low-pass filter.

In other circumstances, discrete variations may be exploited to realize different desired cellular

behaviors. When passed through certain nonlinear processes, such as sequential molecular binding
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events or oligomerizaytion, external signals can be amplified [14] or damped as a result of system

stochasticity. Section 5.2 illustrates such an example, where the nonlinearity arrises as a result of

the binding of gene regulatory factors. Other mechanisms use fluctuations to excite and/or improve

the robustness of resonant behaviors [15]. An example of this behavior will be presented in Section

5.4.

One of the most important and obvious of stochastic phenomena is that of stochastic switching,

where cells can express two or more very different phenotypes despite identical genotypes and

environments [16, 17, 18, 19]. In single cell organisms, the ability to switch at random is an

important evolutionary survival trait in competitive and/or uncertain environments. If a species

behavior is completely uniform, then a single new mechanism may be sufficient for a competitor

to overcome that species (i.e., a single antibiotic would destroy all bacteria). If a species switches

too predictably between phenotypes, then competitors can evolve their own switching strategies to

outperform that organism in every circumstance (i.e., a given sequence of antibiotics would destroy

all bacteria). But if a given cell type switches at random among many unpredictable phenotypes,

then such strategies become much more difficult to devise, and perhaps no strategy would suffice

(i.e., some bacteria would survive no matter what sequence of antibiotics are applied). Even in

the absence of direct competition, the ability to switch at random is also important for survival

in an uncertain environment [20]. To illustrate stochastic switching behavior, Section 5.3 provides

an example of the analysis of a genetic toggle switch that has been used to sense and record

environmental conditions such as UV radiation [21, 22].

1.1 Measurement of single cell variability.

There are a number of well-established experimental techniques with which one can measure the

phenotypic and/or molecular variability of single cells [23]. In many of these techniques, cells are

prepared so that traits of interest (i.e., gene expression, protein-membrane localization, etc...) are

made visible due to the presence or activation of fluorescent markers. For example, fluorescent

dyes can be attached to antibodies, which bind to specific cellular proteins or phosphoproteins

of interest. Using fluorescence in situ hybridization (FISH) techniques, fluorophores can also be

attached via oligomers to DNA and RNA molecules [24, 25, 26]. By combining multiple dyes,

researchers can simultaneously measure multiple different molecule types, or examine colocalization
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or conformational changes in molecules via fluorescence (Förster) resonance energy transfer (FRET)

techniques. Alternatively, genes in cell strains may be cloned to include coding for fluorescent

proteins such as green, yellow or cyan fluorescent protein (gfp, yfp,cfp) instead of, or in addition

to, their naturally expressed proteins. Like FRET, introduction of split GFP [27, 28, 29] enables a

similar ability to measure the colocalization of important proteins.

In addition to the many means of marking individual biological molecules in a cell, there are also

many different ways of measuring these markings within a cell. A natural approach is fluorescence

microscopy, with which one can simply look at the cells and directly observe which cells are active

and which are not. With confocal microscopy, it is possible to resolve individual fluorescently

tagged molecules such as DNA and RNA in fixed cells [26]. For example, with single molecule

FISH and automated 3-dimensional image processing software, it is then possible to count mRNA

molecules in hundreds to thousands of different cells–thereby obtaining precise distributions in

carefully controlled experimental conditions. With time lapse microscopy and non-invasive reporters

like fluorescent proteins, it is possible to track individual living cells as they change over time. In

either confocal or time-lapse microscopy approach, each cell reveals a huge amount of data in the

form of multiple multi-color images, which must be manually or automatically processed.

Another common technique is flow cytometry [30]. In this approach, individual cells pass through

an excitation laser (or lasers) and detectors record how much light is reflected, scattered, or absorbed

and re-emitted at various wavelengths of light. The high throughput nature of this approach enables

researchers to measure millions of cells in a minute. With auto-sampling techniques, researchers

can test hundreds of cultures in an hour–each with with different inputs or conditions. More recent

technologies are currently under development to combine the strengths of microscopy with the high

through-put nature of flow cytometry. In particular, new imaging flow cytometers can capture

multiple fluorescent images of each cell as it passes through the excitation lasers–in some cases

these images may be used to resolved to count individual fluorescently tagged molecules.

1.2 Using measurements of cellular variability to infer system properties.

Each of these experimental approaches enables thorough quantitative measurements of gene expres-

sion. However, the resulting data are vast and often difficult to analyze. In many computational

studies, cell-to-cell variability has been viewed as a computational nuisance. Certain cellular behav-
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iors can be understood only in the context of intrinsic variability, but including this variability in a

computational model results in an explosion of computational complexity. Researchers have made

significant progress on developing methods to handle this computational challenge including kinetic

Monte Carlo algorithms [31, 32, 33, 34, 35, 36], linear noise approximations [37, 38], moment closure

[39, 40] and matching [41] techniques, moment generating functions [42], spectral methods [43] and

finite state projection approaches [44, 45, 46, 47]. While no single computational approach applies

to all biological systems, the growing arsenal of tools makes it more likely that some approach may

suffice for a given system of interest. In Sections 3 and 4, we review a couple of these approaches.

By integrating stochastic modeling approaches with experimental measurements of single-cell

variability, it becomes possible to obtain a better understanding of the dynamics of biochemical

networks. Such analyses provide a new tool with which to compare and contrast different possibil-

ities for evolutionary design [20]. These analyses of cellular variability may also help to determine

what mechanisms are being employed by a particular biological system [48, 49, 50]. For example,

different logical structures such as AND or OR gates can be discovered in two component regula-

tory systems by examining the stationary transmission of the cell variability through the network

[48], or correlations of different aspects of cell expression at many time points can reveal different

causal relationships between genes within a network [49]. Similarly, measuring and analyzing the

statistics of gene regulatory responses in certain conditions can help to identify system parameters

and develop quantitative, predictive models for certain systems [51, 22, 52, 53]. Section 6 provides

such an example on the identification of a gene regulation model from single-cell flow cytometry

data.

1.3 Chapter Focus

The focus of this chapter is to discuss phenomena of cell-to-cell variability in biological systems and

illustrate a few computational analyses of these phenomena. In Section 2, we discuss the mesoscopic

scale for modeling intracellular processes as discrete state Markov processes; we derive the chemical

master equation that describes such processes; and we review a few kinetic Monte Carlo algorithms

that are often used to simulate these processes. In Section 3 we describe the Finite State Projection

(FSP) approach to solving the chemical master equation, and in Section 4, we include step-by-step

examples on using the FSP approach to analyze and identify stochastic models of gene regulation.
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Each of these approaches is further illustrated with graphical user interface Matlab software, which

is included in the book CD and which can be downloaded from http://cnls.lanl.gov/∼munsky or

can be requested from the author at munsky@lanl.gov. In Section 5, we illustrate the use of the

FSP approach and software on a few examples of stochastic gene regulation, and in Section 6 we

use this software and flow cytometry data to identify a model of lac regulation in E. coli. Finally,

in Section 7 we finish with a brief summary on the state of the art in the analysis and identification

of single cell variability in gene regulatory systems.

2 Mesoscopic Modeling of Bio-molecular Reactions.

One could attempt to analyze biochemical reaction networks at many different scales. At the

microscopic scale, one can use molecular dynamics simulations to explore how individual protein

molecules move, fold and interact with surrounding molecules. At the macroscopic scale, large-

volume chemical processes are treated with continuous-valued concentrations that evolve according

to deterministic ordinary differential equations. However, single-cell data of the types discussed in

1.2 require an intermediate approach, typically referred to as the mesoscopic scale. At this scale,

each chemical species, {S1, . . . ,SN}, is described with an integer population, i.e., the population

of Sk is denoted by the integer ξk ≥ 0. At any point in time the state of the system is then given

by the integer population vector [ξ1, . . . , ξN ], and reactions correspond to transitions from one such

state to another. Typically, the process is assumed to evolve according to Markovian dynamics,

meaning that reaction rates depend only upon the current state of the system and not upon how

that state has been reached. In order for this assumption to hold, the system must be well-mixed

in some sense as follows:

Gillespie’s 1992 paper [54] provides a derivation of Markovian chemical kinetics based upon a

literal sense of a well-mixed chemical solution. To understand this argument, consider two spherical

molecules, s1 and s2 in a volume of Ω. A reaction occurs when the two molecule centers come

within a certain distance, r, of one another. During an infinitesimal time period dt, the molecule s1

moves with an average speed u, covers a distance udt, and sweeps a region dΩ ≈ πr2udt relative to

the center of molecule s2. Assuming that the system is physically well-mixed, the probability that

the two molecules react is πr2uΩ−1dt. If there were ξ1 molecules of s1 and ξ2 molecules of s2, then

the probability that any such reaction will occur is given by w(ξ1, ξ2)dt = ξ1ξ2πr
2uΩ−1dt. In this
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formulation, the key result is that the infinitesimal probability of reaction has the form w(ξ1, ξ2)dt

which depends only upon the population {ξ1, ξ2} at the current time and not upon the history of

these populations. We note that according to this derivation, reaction propensities are restricted

to at most second order.

At face value the Markovian description derived by Gillespie does not seem to apply to most

biological systems, where molecules are spatially concentrated and non-spherical. However, the

“well-mixed” concept need not be so literal–the memoryless nature of Markovian dynamics can also

result from the overwhelming complexity of biochemical reactions [55]. Many biochemical reactions,

such as transcription, translation, degradation, protein assembly and folding are comprised of nu-

merous sub-steps. Each of these sub-steps adds a new opportunity for the given reaction to reverse,

abort, or otherwise fail to complete. As more and more of these sub-reactions occur, the distribu-

tion of the corresponding sub-states quickly equilibrates to a quasi-steady distribution. Thus after

a short transient period, the system’s transition probabilities attain a “well-mixed” quasi-steady

equilibrium, which is defined by the current coarse state of the system. Unlike the formulation in

[54], this concept of well-mixedness supports far more complicated formulation for the stochastic

reaction rates, including Michaelis-Menten, Hill and other more complicated functions.

For the purposes of this article, we assume the most general Markov form for a discrete-value, con-

tinuous time chemical process. The reaction rates are given by propensity function w(ξ1, . . . , ξN , t)dt,

where w can be any non-linear function of the species populations and the current time. For later

convenience, we will refer to specific Markov processes with the notation, M, and we will think of

them as random walks on a discrete lattice as shown in as shown in Fig. 2a. In the next subsec-

tion, we present the (chemical) Master Equation, which describes the dynamics of the probability

distributions for such a process.

2.1 The chemical Master Equation.

We describe a chemical solution of N species, {S1, . . . ,SN} by its state x = [ξ1, . . . , ξN ]. Each µth

reaction is a transition from some state xi to some other state xj = xi + νµ. Here, νµ is known

as the stoichiometric vector and it describes how the µth reaction changes the system’s state. For

example, the reaction s1 + s2 → s3 has the stoichiometric vector ν = [−1,−1, 1]T . As described

above, each reaction has a propensity function, wµ(x, t)dt, which is the probability that the µth
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reaction will happen in a time step of length dt. This function of the system population vector and

the current time is allowed to have any arbitrary form, provided that it does not allow for reactions

that lead to negative numbers.

The stoichiometry and propensity functions for each of the M possible reactions fully define

the system dynamics and are sufficient to find sample trajectories with the kinetic Monte Carlo

methods as discussed in Section 2.2. However, for many interesting gene regulatory problems

individual system trajectories are not the best description. Instead, it is desirable to analyze the

dynamics in terms of probability distributions. For this it is useful to derive the chemical master

equation.

Suppose that one knows the probability of all states xi at time t, then the probability that the

system will be in the state xi at time, t + dt, is equal to the sum of (i) the probability that the

system begins in the state xi at t and remains there until t + dt, and (ii) the probability that the

system is in a different state at time t and will transition to xi in the considered time step, dt. This

probability can be written as:

p(xi; t+ dt) = p(xi; t)

(
1−

M∑
µ=1

wµ(x, t)dt

)
+

M∑
µ=1

p(xi − νµ; t)wµ(xi − νµ, t)dt. (1)

If one enumerates all possible xi and defines the probability distribution vector

P(t) = [p(x1; t), p(x2; t), . . .]T ,

then it is relatively easy to derive the set of linear ordinary differential equations, known as the

chemical master equation (CME) [37]:

Ṗ(t) = A(t)P(t). (2)

Although the master equation is linear, its dimension can be extremely large or even infinite, and it

is unusually impossible to solve exactly. In many cases, the master equation can only be solved by

using kinetic Monte Carlo to simulate numerous trajectories for its dynamics. Such approaches are

discussed in the following subsection. In other cases, certain projection approaches make it possible

to obtain approximate solutions for the master equation, as is discussed in Section 3.
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2.2 Kinetic Monte Carlo methods (Stochastic Simulation Algorithm)

The majority of analyses at the mesoscopic scale have been conducted using kinetic Monte Carlo

(MC) algorithms. The most widely used of these algorithms is Gillespie’s Stochastic Simulation

Algorithm (SSA) [31], which is very easy to apply. Each step of the SSA begins at a state x and a

time t and is comprised of three tasks, (i) generate the time until the next reaction, (ii) determine

which reaction happens at that time, and (iii) update the time and state to reflect the previous two

choices. For a single reaction with propensity function, w(x), the time of the next reaction, τ , is an

exponentially distributed random variable with mean 1/w(x). For M different possible reactions

with propensities {wµ(x)}, τ is the minimum of M such random variables, or, equivalently an

exponentially distributed random variable with mean equal to
(∑M

µ=1 wµ(x)
)−1

. To determine

which of the M reactions occurs at t + τ , one must generate a second random variable from the

set µ = {1, 2, . . . ,M} with the probability distribution given by P (µ) = wµ(x)
(

(
∑M

µ=1wµ(x)
)−1

.

Once τ and µ have been chosen, the system can be updated to t = t+ τ and x = x + νµ.

Researchers have proposed many accelerated approximations of the SSA. In the first such ap-

proximation, the system is partitioned into slow and fast portions. In [34] the system is separated

into slow “primary” and fast “intermediate” species. This method uses three random variables at

each step: first, the primary species’ populations are held constant, and the population of the inter-

mediate species is generated as a random variable from its quasi-steady-state (QSS) distribution.

The dynamics of the “primary” species are then found with two more random variables, similar

to the SSA above but with propensity functions depending upon the chosen populations of the

intermediates species. The Slow-Scale SSA (ssSSA) [35] is very similar in that the system is again

separated into sets of slow and fast species. The ssSSA differs in that it does not explicitly generate

a realization for the fast species, but instead uses the QSS distribution to scale the propensities

of the slow reactions. Each of these QSS assumption based approaches lead to a reduced process

where all states must retain exponential waiting times. In contrast, similar reductions based upon

concepts of stochastic path integrals and moment generating functions have yielded coarse-grained

realizations that allow for non-exponential waiting times and thereby preserve the statistical char-

acteristics of the original dynamics [42]. So-called hybrid methods such as [56] and [57] also separate

the system into fast and slow reactions, but these methods do not then rely upon a QSS approx-

imation. Instead, the fast reactions are approximated with deterministic ODEs or as continuous
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valued Markov processes using Langevin equations, and the slow reactions are treated in a manner

similar to the SSA except now with time varying propensity functions.

In a second approach to accelerating the SSA, researchers frequently assume that propensity

functions are constant over small time intervals. With this “τ leap assumption” one can model

each of the M reaction channels as an independent Poisson random process [32]. Beginning at

time t and state x(t), the state at the end of a time step of length τ is approximated as x(t +

τ) = x(t) +
∑M

µ=1 kµνµ, where each kµ is a random variable chosen from the Poisson distribution

kµ ∈ P(wµ(x(t)), τ). The accuracy of τ leaping methods depends only upon how well the τ leap

assumption is satisfied. Naturally, the τ leap assumption is best satisfied when all species have

sufficiently large populations and all propensities functions are relatively smooth. Otherwise small

changes in populations could result in large relative changes in propensities. Ignoring these changes

can easily lead to unrealistic predictions of negative populations and/or numerical stiffness. One

may avoid negative populations by using a Binomial τ leap strategy [58] or by adaptively choosing

the size of each τ leap [59]. One can also ameliorate the problem of numerical stiffness using implicit

methods such as that in [60].

When the populations are very large, and the propensity functions are very smooth, the chemical

species may be more easily modeled with continuous variables using the chemical Langevin equation

[61]. In this solution scheme, one assumes that many reactions will occur in the macroscopic

infinitesimal times step dt without violating the τ leap assumption. One can therefore replace the

Poisson distributions with Gaussian distributions, and treat the resulting process as a stochastic

differential equation driven by white noise [61].

A single simulation using kinetic Monte Carlo algorithms, such as the SSA and its modifications,

describes a possible trajectory of one cell as it changes over time. These trajectories may then be

compared directly to experimental data such as time lapse fluorescence microscopy studies, with

which it is possible to track the dynamics of single cells. Unfortunately, because these trajectories

are random, two identical cells may show very different trajectories, and this comparison can be

difficult to make or even misleading. To avoid these problems, it is often useful to collect statistics

from many such trajectories and try to make comparisons on the levels of these statistics rather

than at the level of a single trajectory. In the next section, we discuss and alternate approach that

can directly generate these statistics for certain systems.
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3 Analyzing Population Statistics with FSP Approaches.

As discussed above, there are a number of experimental techniques to measure and quantify cell

to cell variability. In particular, many of these approaches such as flow cytometry and FISH are

capable of taking only images or measurements from a given cell at a single time point in its

development. With these approaches, one cannot measure trajectories of a given cell, but it is very

easy to establish probability distributions for a population of cells. Thus, to better compare models

and data, it is useful to use modeling approaches to generate these distributions. This is equivalent

to solving the master equation at certain instances in time. With the KMC approaches described

above, this corresponds to running many different simulations and collecting the ensemble statistics.

Alternatively, one could attempt to directly solve for the solve for the populations statistics or

distributions. In this section, we discuss one such approach, namely the Finite State Projection

approach, to solve the master equation.

3.1 Notation for the FSP

In order to describe Finite State Projection approach, we must first introduce some convenient

notation in addition to that presented above. As above, the population of the system is comprised

of the integer populations of the different species, {ξ1, . . . , ξN} ∈ Z≥0. The states can be enumerated,

meaning that each can be assigned a unique index i such that the state xi refers to the population

vector, [ξ
(i)
1 , . . . , ξ

(i)
N ].

Let J = {j1, j2, j3, . . .} denote a set of indices in the following sense. If X is an enumerated set of

states {x1,x2,x3, . . .}, then XJ denotes the subset {xj1 ,xj2 ,xj3 , . . .}. Let J ′ denote the complement

of the set J . Furthermore, let vJ denote the subvector of v whose elements are chosen according

to J , and let AIJ denote the submatrix of A such that the rows have been chosen according to I

and the columns have been chosen according to J . For example, if I and J are defined as {3, 1, 2}

and {1, 3}, respectively, then: 
a b c

d e f

g h k


IJ

=


g k

a c

d f

 .
For convenience, we will let AJ := AJJ . With this notation, we are now ready to state the main

result of the Finite State Projection approach [44, 46], which we will present as it was described in
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[62].

We define the infinite state Markov process, M, as the random walk on the configuration set

X, as shown in Fig. 2a. The master equation for this process is Ṗ(t) = A(t)P(t), with initial

distribution P(0) as described in Section 2. We can define a new Markov processMJ such as that

in Fig. 2b, comprised of the configurations indexed by J plus a single absorbing state. The master

equation of MJ is given by ṖFSP
J (t)

ġ(t)

 =

 AJ 0

−1TAJ 0

 PFSP
J (t)

g(t)

 , (3)

with initial distribution,  PFSP
J (0)

g(0)

 =

 PJ(0)

1−∑PJ(0)

 .

s2

s1

A C

s2

s1

B

s2

s1

Figure 2: (a): A Markov chain for a two species chemically reacting system, M. The process begins in the con-
figuration shaded in grey and undergoes four reactions to increase/decrease the two different species populations.
The dimension of the Master equation is equal to the total number of configurations in M, and is too large to
solve exactly. (b) In the FSP algorithm a configuration subset XJ is chosen, and all remaining configurations are
projected to a single absorbing point g. This results in a small dimensional Markov process, MJ . (c) By using
multiple absorbing sites, one can keep track of how the probability measure leaves the projection space [62].

3.2 FSP Theorems and Results

The finite state processMJ has a clear relationship to the originalM. First, the scalar g(t) is the

exact probability that the system has been in the set XJ ′ at any time τ ∈ [0, t]. Second, the vector

PFSP
J (t) are the exact joint probabilities that the system (i) is in the corresponding states XJ at

time t, and (ii) the system has remained in the set XJ for all τ ∈ [0, t]. Note that PFSP
J (t) also

provides a finite dimensional approximation of the solution to the CME as follows:

First, it is guaranteed that PJ(t) ≥ PFSP
J (t) ≥ 0 for any index set J and any initial distribution

P(0). This is a concequence of PFSP
J (t) being a more restrictive joint distribution than PJ(t).
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Second, the actual 1-norm distance between P(t) and PFSP (t) is easily computed as

∣∣∣∣∣∣
 PJ(tf )

PJ ′(tf )

−
 PFSP

J (tf )

0

∣∣∣∣∣∣
1

=
∣∣PJ(tf )−PFSP

J (tf )
∣∣
1

+ |PJ ′(tf )|1 ,

= |PJ(tf )|1 −
∣∣PFSP

J (tf )
∣∣
1

+ |PJ ′(tf )|1 ,

= 1−
∣∣PFSP

J (tf )
∣∣
1
,

= g(t). (4)

3.3 The FSP Algorithm.

The formulation above suggests an FSP algorithm [44], which examines a sequence of finite pro-

jections of the ME. For each projection set, one can obtain an accuracy guarantee using Eqn. (4).

If this accuracy is insufficient, more configurations can be added to the projection set, thereby

monotonically improving the accuracy. The full algorithm can be stated as follows:

The Original Finite State Projection Algorithm

Inputs Propensity functions and stoichiometry for all reactions.

Initial probability density vector, P(0).

Final time of interest, tf .

Total amount of acceptable error, ε > 0.

Step 0 Choose an initial finite set of states, XJo , for the FSP.

Initialize a counter, i = 0.

Step 1 Use propensity functions and stoichiometry to form AJi .

Compute g(tf ) by solving Eqn. 3

Step 2 If g(tf ) ≤ ε, Stop.

PFSP (t) approximates P(tf ) to within a total error of ε.

Step 3 Add more states to find XJi+1
.
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Increment i and return to Step 1.

In this FSP algorithm, there are many way to choose and expand the projections space in Steps

0 and 3, respectively. In the following subsections, we will present a couple such approach, although

others may be equally good.

3.3.1 Choosing the initial projection space.

A number of different approaches have been proposed for choosing the initial guess for the projec-

tion space. In previous work [44], the initial projection set XJ0 was an arbitrarily chosen set of

configurations reachable from the initial condition. The most obvious choice is for XJ0 to contain

only the initial configuration: XJ0 = {x(0)}. The problem with this approach is that the initial

projection space is likely to be far too small. In [63] we proposed initializing XJ0 with a set of

states determined by running a few trial SSA trajectories. If we use more SSA runs, XJ0 will likely

be larger and therefore retain a larger measure of the probability distribution in the specified time

interval. As one uses more SSA runs in the initialization portion of Step 0, fewer iterations of the

FSP algorithm are necessary, but there is an added computation cost for running and recording the

results of the SSA runs. In this study and in the codes provided, we utilize a mixture of the two

approaches.

First, we define a projection space that is defined by a set of nonlinear inequalities:

XJ = {xi}, such that {fk(xi) ≤ bk} for all constraints k = {1, 2, . . . , K}, (5)

where the functions {fk(x)} are fixed functions of the populations and where the bounds {bk} are

changed in order to expand or contract the projection space. For example, in the two species {ξ1, ξ2}

systems below, we will use the projection shape functions:

f1 = −ξ1, f2 = −ξ2, f3 = ξ1, f4 = ξ2,

f5 = max(0, ξ1 − 4) max(0, ξ2 − 4),

f6 = max(0, ξ1 − 4)2 max(0, ξ2 − 4),

f7 = max(0, ξ1 − 4) max(0, ξ2 − 4)2.
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We note that with b1 = b2 = 0, the first of these two constraints specify that the both species must

have non-negative populations. The third and fourth constraints specify the max populations of

each species, and the remaining constraints specify additional upper bounds on various products

of the population numbers. For all constraints, it is important that increases in the values {bk}

correspond to relaxations of the associated constraints and increases in the projections space. In

practice, these constraints functions are easily changed–the best choice of constraints remains an

open problem that will differ from one system to another. Next, we run a single SSA simulation

and record all of the states (ξ1, ξ2) that are visited in that simulation. Finally, we increase the

boundary values {bk} until the inequalities in (5) are satisfied. Thus, we arrive at an initial guess

for the projection space, the next step is to expand that projection space until the FSP error meets

the specified tolerance.

3.3.2 Updating the projection space.

In Step 3 of the FSP algorithm it is necessary to expand the projection space. In [44] the space was

expanded to include all of the states that are reachable in one reaction from the current set. Because

not all reactions are equal, this is a very inefficient approach to expanding the projection space–it

can lead to expanding too far in one direction or too little in another. Here we tailor an approach

similar to that in [63] in order to match our definition of the projection space given in Eq. 5. For

this, we choose K absorbing points {g1, . . . , gK} where each gk(t) corresponds to the probability

that the system has left the set XJ in such a way as to violate the kth boundary condition. To do

this, we simply split the index set, J ′, into K different subsets, {J ′1, . . . , J ′K} where J ′k is the set of

states that satisfy the first (k − 1) boundary constraints, but not the kth boundary constraint:

J ′k = {i} such that {f1(xi) ≤ b1, . . . , fk−1(xi) ≤ bk−1, fk(xi) > bk}.

With these index sets, we arrive at a new projection for the master equation:

d

dt



PFSP
J (t)

g1(t)

...

gK(t)


=



AJ(t) 0

−∑AJ ′1J
(t) 0

... 0

−∑AJ ′KJ
(t) 0





PFSP
J (t)

g1(t)

...

gK(t)


. (6)
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The solution of (6) at a time tf yields all of the same information as above. In particular, the

sum of the vector g(t) provides the exact distance between the FSP approximation and the true

solution, as was observed in Eqn. (4). In addition, each element, gk(t), is the probability that the

kth boundary condition was violated and that this violation occurred before the {1, 2, . . . , k − 1}th

boundary conditions were violated. This knowledge is easily incorporated into Step 3 of the FSP

algorithm. If the kth one boundary condition is violated with high probability, we expand XJ by

increasing bk to relax that boundary condition.

3.4 Advancements to the FSP Approach.

Linear systems theory provides many tools with which the order of the chemical master equation

may be reduced and the efficiency of the FSP may be improved. In most of these reductions, one

seeks to approximate the vector P(t) ∈ Rn (here, n may or may not be finite) as some linear

transformation of a lower dimensional vector, ΦP(t) = q(t) ∈ Rm≤n. For example, the original

FSP itself is one such projection in which the elements of q(t) correspond to PJ(t). There are

many other possible projection choices, each of which takes advantage of a different common trait

of discrete state Markov processes.

In [64] and [62], we use control theory concepts of controllability and observability to obtain a

minimal basis set for the space in which the solution to the FSP evolves. This approach takes into

account that not all points in the full probability distribution are necessary, and one may only be

interested in solving for a coarser level behavior, such as population means, variances, or extreme

value events. In this case, the vector q corresponds to the observable and controllable states of the

master equation, and can have a very low dimension [62].

Alternatively, in [65, 66], one may use time scale separations to project the system onto a spaces

defined by the system’s fast or slow dynamics. In this case, the projection operator, Φ is spanned by

the appropriately chosen sets of eigenvectors, and q(t) refers to the dynamics in that space. For long

times, Φ consists of the eigenvectors corresponding to the slow eigenvalues. Conversely, for short

times, Φ should consists of the eigenvectors that correspond to the fast eigenvalues. This approach

is similar to the ssSSA [35] discussed above, in that the existence of “fast” and “slow” species do

indeed result in a separation of time scales in the ME. However, time-scale based reductions to

the master equation are more general in that they may be possible even in the absence of clear
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separations of fast and slow species.

For a third projection-type reduction, one can assume that the probability distribution varies

smoothly over some portions of the configuration space, solve the FSP problem on a coarse grid,

and then interpolate to find the distributions at intervening points. This approach has shown great

promise for certain problems [46], particularly for systems with high populations, where the full

FSP may have an exorbitant dimension size. Furthermore, it is relatively easy to formulate an

algorithm to systematically refine the interpolation grid to attain more precise solutions, which are

better tailored to a given system.

For some systems, probability distributions may drift over large portions of the state space, yet

remain relatively tight in that they are sparsely supported during any given instant in time [63, 45].

By splitting the full time interval into many small subintervals, one can reduce computational effort

by considering much smaller portions of the state space during each time increment. For further

improvements in efficiency, many of these these multiple time interval solutions of the FSP can

readily be combined with the projection based reductions discussed above.

4 Description of the FSP two-species software.

Before studying any specific biological problem, it is useful to introduce the FSP Toolkit through a

simple tutorial example.1

4.1 System initialization

The first task in analyzing any system is to specify the system mechanics, parameters, and initial

conditions. For this first example, let us consider a process of gene transcription and translation

[3], where the reaction mechanisms are defined:

R1 : ∅ → R, R2 : R→ ∅,

R3 : R→ R + P, R4 : P → ∅.
1All examples shown in this tutorial, can be accessed by typing “FSP ToolKit Main” in the Matlab command window and then

clicking the appropriate button in the resulting graphical user interface.
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The propensity functions of these reactions are

w1 = kR, w2 = γRx,

w3 = kPx, w4 = γPy,

where the rates are {kR = 5, γR = 1, kP = 5, γP = 1} and the initial condition is given as five

molecules of mRNA (x(0) = 5) and two protein molecules (y(0) = 2). For this example, we have

also chosen a final time of 10 time units. For the Finite State Projection approach, it is necessary

to specify the maximum allowable 1-norm error in the solution of the master equation. For all

examples presented in Sections 4 and 5, we have set a strict accuracy requirement of ε = 10−6. For

the FSP Toolkit, these mechanisms and parameters can be entered and/or changed directly in the

graphical interface, or they can be pre-defined in a user-specified file.

4.2 Generating stochastic trajectories

Once the system is specified, one can solve it with many different approaches. Perhaps the simplest

such approach is to run a stochastic simulation to find a sample trajectory for the process. In the

FSP Toolkit, this can be accomplished simply by pressing the button “Run SSA”. Fig. 3 illustrates

three different aspects of sample trajectories obtained from this approach. Figs. 3A and 3B show

the populations of x and y, respectively, as functions of time, and Fig. 3C shows the trajectories

in the x-y plane. Because the process is stochastic, each trajectory achieved in this manner will

be different. Although a few SSA runs do not provide a solution to the master equation, they do

provide a good sense of the system’s dynamics. Furthermore, the SSA runs help to choose an initial

projections space for use in the FSP solution.

4.3 Solving the Master Equation

In the FSP Toolkit, all aspects of the FSP solution can be acquired simply by pressing the button

marked “FSP–Solve It” on the graphical interface. for the casual user, this is sufficient to specify

and solve the master equation for many problems. However, for the advanced user, it is import to

understand how this solution is obtained. This process is described as follows, beginning with the

definition of the master equation.
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Figure 3: Three stochastic trajectories for the example system in Section 4. Panel A) Trajectories for species X
versus time. Panel B) Trajectories for species Y versus. Panel C) Trajectories on the X-Y plane.

4.3.1 Defining the Full Master Equation

With the definition of the mechanisms and parameters, one can also define the master equation,

Ṗ(t) = A(t)P(t). For this, the infinitesimal generator matrix, A = {Ai,j} is defined as

Aij =


−∑M

µ=1wµ(xi)

wµ(xj)

0

for (i = j)

for all j such that (xi = xj + νµ)

Otherwise

.

 . (7)

For the initial distribution, we use the distribution P(0) = {Pi(0)} given as:

Pi(0) =

 1, if xi = [5, 2]

0, otherwise

 ,

which corresponds to a specific initial condition of five mRNAs and 2 proteins.

4.3.2 Defining the Projected Master Equation

The finite state projection space is governed by the boundary shape functions, {fk}, as defined in

Eqn. 5. To initialize the constraints, {bk}, we use the previous SSA runs as follows. If XSSA refers
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to the set of all states, {x}, that were visited during the SSA run(s), then the initial value for each

bk is set to:

bk = max
x∈XSSA

fk(x).

In turn, the index sets for the projection are defined by the functions {fk} and the constraints {bk}

as follows:

J = {i} such that {f1(xi) ≤ b1, . . . , fk(xi) ≤ bk},

J ′1 = {i} such that {f1(xi) > b1}.

J ′2 = {i} such that {f1(xi) ≤ b1, f2(xi) > b2},
... =

...

J ′K = {i} such that {f1(xi) ≤ b1, . . . , fK−1(xi) ≤ bk−1, fk(xi) > bk}.

With these index sets we can define the projections matrix AJ and the row vectors
{∑

AJ ′kJ
(t)
}

for use in Eqn. 6.

4.3.3 Solving the Projected Master Equation

Once defined, Eqn. 6 can be solved in a number of different ways depending upon the system.

For systems with time varying reaction rates (see Section 5.2), a more general stiff ODE solver is

necessary. For systems where the matrix A is constant, the solution can be found with Krylov

subspace methods included in Roger Sidje’s expokit ([67]–http://www.expokit.org). With either

solution scheme, the solution of (6) is solved incrementally in time from initial time t0 to time

t = min(tf , tv), where tv is the time at which the FSP error tolerance is first observed to be vio-

lated. This definition of tv is necessary only for efficiency reasons–at time tv the algorithm already

knows that the current projection is insufficient and it knows which of the K boundary conditions

have been violated. By exiting early from the ODE solver, the solution need not be computed over

the interval (tv, tf ), and there is a significant computational savings.
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4.3.4 Updating the Projection

Upon solving Eqn. 6, there are two possibilities: Either the truncation error was small enough

(
∑K

k=1 gk(tf ) ≤ ε), and the solution is acceptable, or the projection must be expanded to encompass

more states. In the latter case, the values of {gk(tv)} are used to increase the boundary constraint

constants. For the examples shown here, we use the simple expansion rule:

If gk(tv) ≥ ε/K then bk + 0.05|bk| → bk.

Once the boundary constants have been updated in this manner, the next projection can be defined,

and the FSP algorithm may continue.

4.3.5 Analyzing FSP Solutions.

Once the FSP error tolerance has been met, there are a number of ways to represent and understand

the acquired solution. Fig. 4 shows a couple of these representations that are automatically plotted

using the “FSP Toolkit.” Fig. 4A shows a contour plot of the joint probability distribution for the

populations of mRNA and protein molecules and Figs. 4C,D show marginal distributions for each

of these species separately. Fig. 4B shows a plot of the projection space that was found during the

FSP algorithm, where the region in white is included in the projection, while the rest in black is

excluded.

All of the results in Fig. 4 correspond to the solution at the final time of tf = 10 time units.

however, once a projection is found to be sufficient for the final time, tf , that projection will also

be satisfactory for all times between t0 and tf . With this in mind, we can compute the dynamics

of the means for each of the species as functions of time. For example, the trajectory for species Y

is plotted in Fig. 6A below. To generate these plots, one can simply press the button “Show FSP

Dynamics” in “FSP Toolkit.” In addition to showing trajectories of the means and and standard

deviation, this will also create a movie of the joint distribution as a function of time.

5 Examples of Stochastic Analyses

In this section, we will utilize the stochastic analysis tools described above to illustrate some im-

portant stochastic phenomena in biological systems. All of these examples can be implemented in
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Figure 4: The FSP solution of the master equation at the the final time. Panel A) The joint probability distribution of
species X and Y. Panel C,D) the marginal distributions of Species X and Y, respectively. Panel D) The automatically
chosen projection space that satisfies a stopping criteria of

∑
(gtf ) ≤= 10−6.

Matlab using the codes provided, and with minimal user input. The reader is strongly encouraged

to work through each example using this software.

5.1 Example 1: Using autoregulation to reduce variability in gene expression

In order to illustrate the importance of feedback, the fist example considers the auto-regulation of a

single gene whose protein inhibits its own transcription. The simplified model is comprised of four

simple reactions:

R1 : ∅ → R, R2 : R→ ∅,

R3 : R→ R + P, R4 : P → ∅.

The propensity functions of these reactions are

w1 = kR/(1 + kfy), w2 = γRx,

w3 = kPx, w4 = γPy,

where the term kf denotes the strength of the negative feedback. For the nominal model without

feedback, we have chosen a parameter set of {kR = 5, γR = 1, kP = 5, γP = 1, kf = 0}, in non-
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dimensional time units. For the feedback model, we have set the feedback term to unity, kf = 1,

and adjusted the basal transcription rate to kR = 120 in order to maintain the same mean levels of

5 mRNA transcripts and 25 proteins at the final time. For each parameter set, the distribution of

mRNAs and proteins after tf = 10 time units is plotted in Fig. 5, where the solid lines correspond

to the nominal system and the dashed lines correspond to the system with feedback.
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Figure 6: The effect of feedback in gene regulation. Panel A) Trajectory for the mean level of species Y in the
absence of feedback. Panel B) Trajectory for the mean level of species Y with auto-regulatory feedback. The dashed
lines correspond to the solution to the deterministic ODE model, and the solid lines correspond to the mean of the
stochastic model.

By adding negative feedback, the variance in the mRNA levels is reduced by about 20%, while the

variance in the protein levels is reduced by about 40% (see Fig. 5). Fig. 6 shows the trajectories for

the mean level of proteins for the two systemw with and without feedback. Although both systems

eventually achieve the same mean level of protein, the actual dynamics are slightly different. In

addition to having less variance, the auto-regulated system has a faster response time. However,

the increased speed and lower variability in the feedback mechanism comes at a cost of protein

overproduction, which may be costly in terms of cellular resources.
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5.2 Example 2: Using nonlinearities and stochasticity to amplify/damp external sig-

nals.

For systems with linear reaction rates, stochastic models will exhibit the exact same mean level

behavior as the corresponding deterministic description. This connection rests on the fact that the

expected value of a linear function is equal to the same linear function applied to the mean of its

argument. In other words, E{f(x̃)} = f({E{x̃}), for any distribution of x̃, when f(.) is linear. For

nonlinear functions, this equivalence typically does not hold and non-linearities can result in big

differences between the stochastic and deterministic representations of the system. Of particular

interest is when f(x) has a significant curvature over the support of the variable x. According to

Jensen’s inequality, if f(.) is convex over the support of x, then E{f(x)} ≥ f({E{x}). In this case,

nonlinearities and stochasticities combine to amplify the signal. If the function is concave, then the

inequality is reversed and the signal is effectively damped by the nonlinear and stochastic effects.

In this example, we show how this nonlinearity can help to amplify or damp a system’s response to

an external signal.

In this example, we consider a two species system comprised of four simple reactions:

R1 : ∅ → X, R2 : X → ∅,

R3 : ∅ → Y, R4 : Y → ∅.

In this system, we assume that the production of the first species, X, is modulated by an external

signal according to w1 = kx(1 + e−i(Ωt−π/2), and the degradation of X is given by the standard

w2 = γxx. We consider three subcases for the production of species Y:

(a) species X activates the production of species Y according to the linear propensity function

w−3 = kyx/2;

(b) species X activates production of species Y according to the concave propensity function

w∩3 = kyx/(1 + x);

(c) species X represses the production of species Y according to the convex propensity function

w∪3 = ky/(1 + x).

In all three sub-cases, the degradation of species Y is given by w4 = γyy. The parameters are
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kept the same in all three cases: {kx = 10s−1, γx = 10s−1, ky = 15s−1, γy = 1s−1,Ω = 1s−1}.

Using the FSP toolKit, one can solve for and generate movies of the distributions of X and Y

as functions of time. The solid lines in Fig. 7 illustrate the dynamics of the mean of X for each

of the different sub-cases where the propensity for the production is linear, convex or concave.

For comparison, the dashed lines show the corresponding solution to the deterministic ordinary

differential equation:

dx

dt
= w1(x, t)− w2(x);

dy

dt
= w3(x)− w4(y).

As expected, the mean level of the system with the linear reaction rates is exactly the same as the

solution of the deterministic ODEs (see Fig. 7A). For the concave activation of Y, we see that the

nonlinear stochastic effects dampen the response to the external signal (see Fig. 7B). Finally, for

the convex repression of Y, we see that the nonlinear stochastic effects amplify the response to the

external signal (see Fig. 7C).
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Figure 7: The effects of nonlinearities and stochasticity on signal transduction. Panel A) Trajectory for the mean
level of species Y with when species X activates Y through linear regulation. Panel B) Trajectory for the mean
level of species Y when species X activates Y with a concave function. Panel C) Trajectory for the mean level of
species Y when species X represses Y with a convex function. Panels A-C correspond to a system where the external
signal varies with a frequency of 1 rad/s. Panels D-F correspond to a system where the external signal varies with a
frequency of 10 rad/s. In all plots, the dashed lines correspond to the solution to the deterministic ODE model, and
the solid lines correspond to the man of the stochastic model.

As a side note, the system considered here also acts as a low-pass filter of the external signal.

At a frequency of 1 rad/s, the external signal is easily passed through the system. However, if the

external fluctuations are much higher in frequency, say 10 rad/s, then the fluctuations become much

smaller (see Fig. 7D-F).
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5.3 Example 3: Stochastic Toggle Switch.

One of the most obvious of stochastic phenomena in biological systems is that of stochastic switching.

To illustrate this phenomenon and how it could be analyzed, we consider the toggle switch composed

of genes lacI and λcI, which inhibit each other. This system was experimentally constructed in [68]

and later used as a sensor of UV light in the environment [21]. In the switch the proteins λcI and

LacI inhibit each other as shown in Fig. 8. The switch works as a sensor because the degradation

rate of λcI is sensitive to various factors in the external environment, and the system is tuned so

that its phenotype is sensitive to changes in this degradation rate. With low degradation rates, λcI

will out-compete LacI–in high λcI degradation conditions, LacI will win the competition. In [21],

a GFP reporter has been used to quantify the expression level of LacI. While many models are

capable of describing this and other toggle switches (see for example [21, 69, 19, 70]), we consider

a relatively simple model from [22]. This model is described as follows.

λ CI Promoter λ CI Gene

lacI Gene lacI Promoter

λ CILacI∅ ∅

UV

Figure 8: Schematic of the toggle model. Two proteins, λcI and LacI inhibit each other. Environmental influences
(ultraviolet radiation) increase the degradation rate of λcI and affect the tradeoff between the two regulators.

We assume that four non-linear production / degradation reactions can change the populations

of λcI and LacI according to:

R1 ; R2 ; R3 ; R4

∅ → λcI ; λcI→ ∅ ; ∅ → LacI ; LacI→ ∅.
(8)

The rates of these reactions, w(λcI,LacI,Λ) = [w1(λcI,LacI,Λ), . . . , w4(λcI,LacI,Λ)] depend upon

the populations of the proteins, λcI and LacI, and the parameters in

Λ = {k(0,1)
λcI , αLacI, ηLacI, k

(0,1)
LacI , αλcI, ηλcI, δLacI, δλcI(UV)}, according to:

w1 = k
(0)
λcI +

k
(1)
λcI

1 + αLacI [LacI]ηLacI
; w2 = δλcI(UV)[λcI];

w3 = k
(0)
LacI +

k
(1)
LacI

1 + αλcI[λcI]ηλcI
; w4 = δLacI[LacI],
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In the model, the λcI degradation parameter, δλcI, takes on different values depending upon the UV

radiation level, while the remaining parameters are assumed to be independent of environmental

conditions. As in [22], we have chosen a reference parameter set as follows:

k
(0)
λcI = 6.8× 10−5 s−1 k

(1)
λcI = 1.6× 10−2 s−1 αLacI = 6.1× 10−3 N−ηLacI

k
(0)
LacI = 2.2× 10−3 s−1 k

(1)
LacI = 1.7× 10−2 s−1 αλcI = 2.6× 10−3 N−ηλcI

ηLacI = 2.1× 10−0 ηλcI = 3.0× 10−0 δLacI = 3.8× 10−4 N−1s−1,

(9)

where the notation N corresponds to the integer number of molecules of the relevant reacting

species. We have also assumed the following for the degradation rate of λcI:

δλcI(UV) = 3.8−4 +
0.002UV2

1250 + UV3 ,

which has been chosen to approximate the values of

{δλcI(0) = 0.00038s−1, δλcI(6) = 0.00067s−1, δλcI(12) = 0.0015s−1},

as used in [22].
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Figure 9: Trajectories of the genetic toggle switch. Two separate initial conditions are considered corresponding to
(λcI,LacI) = (30,5) in black and (λcI,LacI) = (10,60) in gray. three different UV radiation levels are considered:
0J/m−2, 6J/m−2, and 12J/m−2 in the left, center and right columns, respectively. Different aspects of the trajectories
are show in the rows: λcI versus time (top), LacI versus time (middle), λcI versus LacI (bottom).
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Fig. 9(left) shows numerous trajectories of the system beginning at two different initial conditions

in the absence of UV radiation, one corresponding to high expression of λcI=30 and low expression

of LacI=5, and the other corresponding to high expression of LacI=60 and low expression of λcI=10.

Both conditions are quite stable over a period of 5 hours when there is no UV radiation. When UV

radiation is applied, the degradation rate of λcI increases, and the stability of the high λcI state is

decreased leading to switching to the high LacI state. This can be observed in the center and right

columns corresponding to 6 and 12J/m2 UV radiation levels. As the radiation level increases, the

rate of switching also increases (compare center and right columns).

To quantify the probability of switching from the high to low λcI state, we can solve the master

equation using the FSP approach. This is easily solved for using the FSP ToolKit. Fig. 10 shows

the probability distribution for the amount of LacI after 1, 2, 4 and 8 hours for each of the three

different UV levels. In all cases, we assume that the system began with 30 molecules of λcI and 5

molecules of LacI.

5.4 Example 4: Stochastic Resonance.

To illustrate the phenomenon of stochastic resonance, we turn to a very simple theoretical model

of circadian rhythm. The model consists of a singe gene that can have two states, s1 and s2. When

it is the system is in state s1, it is active and rapidly produces a protein denoted as Y. This protein

is assumed to bind to the s1 with a very high cooperativity factor transforming the gene into the

state s2. The state s1 is active and allows for the production of Y, and the state s2 is assumed to

be inactive. In addition to binding and forming state s2, the product Y also stabilize the s2 state,

also with a high cooperativity. Mathematically, these reactions are described by:

R1 : s1 → s2, R2 : s2 → s1,

R3 : s1 → s1 + Y, R4 : Y → ∅.

The propensity functions of these reactions are

w1 =
s1y

10

100010 + y10
, w2 =

100s2

1 + y10
,

w3 = 20s2, w4 = 0.02y,
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Figure 10: Distributions of LacI at different times (rows) and UV radiation levels (columns). All cells start with a
high λcI and low LacI expression level (λcI=30, LacI=5). Without radiation (left column) the low LacI state is very
stable, and very few cells switch. At high UV radiation (right column) almost all cells switch to the high expression
state within about two hours. At a moderate UV level (center), all cells will eventually switch, but the time to do
so is much longer–a significant low LacI population still exists after eight hours).

We assume that the system begins at an initial condition where the gene is in the s1 state,

and there are 100 molecules of Y. With these reactions and initial conditions, Fig. 11A, illustrates

two stochastic trajectories of the system. From the figure, it is clear that the process maintains a

strong oscillatory behavior, although the deterministic model of the same process reaches a steady

state in only one oscillation (see the dashed lines in Fig. 11B). The oscillations of the stochastic

process would continue in perpetuity, although without restoring interactions, different trajectories

become desynchronized after numerous cycles. To illustrate this de-synching of the processes, the

solid line in Fig. 11B shows the mean level of the stochastic process over time as computed with the

FSP approach. Even after five cycles, the mean level of the population is still showing significant

oscillations.
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Figure 11: The effect of noise to induce and maintain oscillations. A) Two stochastic trajectories of the theoretical
circadian rhythm model. B) The mean level of species Y as a function of time as computed with the stochastic model
(solid line) or with the deterministic ODE model (dashed line).

6 Identifying stochastic models of gene regulation.

As has been seen already in the previous examples, different mechanisms or parameters can cause

biochemical systems to exhibit different behaviors with respect to their fluctuations and cell-to-cell

variability. As a result, these fluctuations contain additional information about the underlying

system, which might not be obtainable from the mean level behavior [52]. In turn, this information

could enable researchers to identify mechanisms and parameters of gene regulatory constructs [52,

22]. To illustrate this approach, we will identify a model of regulation of the lac operon in E. coli

under the induction of IPTG. For this identification, we utilize experimental data from [52], but we

attempt to fit a simpler model to this data.

gfplacgfplac

LacI

LacI

GFP ∅
w1

w4

w5

goff1 gon

gfplac

LacI

LacI

w3

goff2

LacI
w2

w6

Figure 12: Schematic of the lac induction model with cooperative activation by IPTG.

The chosen model corresponds to a gene that can be in three distinct states, denoted as goff2 ,

goff1 and gon corresponding to when two, one or zero molecules of LacI are bound to the lac operon

(see Fig. 12). The unbinding of LacI is assumed to be the same for both molecules and can be

described by the reactions:

R1 : goff2
w1−→ goff1 , R2 : goff1

w2−→ gon
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where each unbinding transition is assumed to depend upon the level of IPTG according to

w1 = (κ0 + κ1[IPTG]) goff2 , w2 = (κ0 + κ1[IPTG]) goff1 .

In this model, the total level of LacI, [LacI]Tot, is assumed to be constant, but the effective

amount of LacI free to bind is diminished through the action of IPTG according to the expression:

[LacI]eff =
[LacI]Tot

β + [IPTG]
.

The binding rate is then simply a constant times the effective LacI level. In order to capture the

effect of cooperatively, this constant is allowed to depend upon whether it is the first or second LacI

molecule to bind.

w3 =
α1

β + [IPTG]
goff1 , w4 =

α2

β + [IPTG]
gon,

For the current study, the level of IPTG is assumed to be constant for all times t > 0.

Production of GFP occurs only when the gene is in the gon state and has the rate: w5 = kGgon.

The propensity for degradation of GFP is the standard linear degradation: w6 = γGFPy. Because

GFP is known to be a stable protein, its degradation rate is set to the dilution rate of γGFP =

3.8× 10−4, and there remain five unknown positive real parameters for the regulatory system:

Λ = {κ0, κ1, α1, α2, β, kG} ∈ R6
+.

In addition to these parameters which describe the evolution of the probability distribution for

the GFP population, it is also necessary to account for the background fluorescence and variability

in the fluorescence of individual GFP molecules. The values for these quantities were previously

obtained in [52]. In particular, the background fluorescence was assumed to be independent of the

IPTG levels, and was measured at each instant in time [52]. The mean, µGFP = 220 AU, and

standard deviation, σGFP = 390 AU, in the fluorescence per GFP molecule are also taken from

[52]. It is important to note that the parameters µGFP and σGFP are highly dependent upon the

flow cytometer and its measurement settings, particularly the thresholds for event detection and

the amplification of the fluorescence detector.

The current model is fit to the measurements of GFP fluorescence at {5, 10, 20, 40, 100}µM IPTG

and at times of {0, 3, 4, 5} hours after induction. These data are in arbitrary units of fluorescence,
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and have been collected into sixty logarithmically distributed increments between 10 and 105. The

two separate data sets are shown with solid lines in Fig. 13, where the columns correspond to

different time points and the rows correspond to different IPTG induction levels. For the initial

conditions, we assumed that every cell begins in the goff2 state with zero molecules of GFP and no

IPTG at a time of three hours before induction (t = −3hr). The fit is begun with an initial guess

of unity for β and 10−4 for the remaining five parameters, and the search is run using numerous

iterations of Matlab’s fminsearch and a simulated annealing algorithm. The objective for the fit

is to match the fluorescence distribution as close as possible in the 1-norm sense for all times and

IPTG levels. The electronic data and the codes for fitting this data can be downloaded from

http://cnls.lanl.gov/∼munsky or can be requested from the author at munsky@lanl.gov.

For the chosen model, Fig. 13 shows the distributions of the measured and fitted GFP fluorescence

levels in the various experimental conditions. From the figure, one can see that this simplified model

does indeed capture the qualitative and quantitative features of the distributions at the different

times and IPTG induction levels (compare dashed lines to solid lines). The final parameter values

of the fit were found to be:

κ0 = 1.91× 10−5 s−1, κ1 = 3.21× 10−6 µM−1s−1, , β = 4.88× 102 µM,

α1 < 1.0× 10−10 µMs−1, α2 = 5.36× 10−1 µMs−1, kG = 8.09× 10−2 s−1,

It is useful to note that the parameter, α1 is many orders of magnitude smaller than the parameter

α2, which has the same units. Furthermore, the time scale of reaction three is on the order of

w−1
3 ≈ β/α1 � 1010s−1, which is far longer than the experimental time. This suggests that this

parameter is not necessary for the model to fit the data. Indeed, setting α1 = 0 results in no

appreciable difference in the model fits for any of the cases. In other words, the state goff2 is not

needed in the current model to capture the data, suggesting that this state is unobservable from

the current data set.

For the fits shown in Fig. 13, we have used all of the data and found a single parameter set. It

is also interesting to determine how well smaller subsets of the data would do to (i) constrain the

model parameters and (ii) enable predictions of the other conditions. To examine this, we attempt

to identify the model from each possible combination of three or four different IPTG levels. Table

1 and Fig. 14 show the parameters that have been identified with each of these data sets and Table
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Figure 13: Measured (solid lines) and computed (dashed lines) histograms of gfp expression under the control of
the lac operon and induced with IPTG. The columns correspond to different measurement times (0,3,4,5)hr after
induction. The rows correspond to different levels of extra-cellular IPTG induction (5,10,20,40,100)µM. Experimental
data is reproduced from [52], but a different model is used to fit this data as described in the text.

2 shows the one norm errors in each of the different data sets, where 1-norm prediction errors are

shown in bold face. From the fits resulting from the various data subsets, it is possible to determine

which data sets are the most predictive of the remaining conditions. In particular, when four data

sets are available, the best overall fit is found when all but the 40µM IPTG concentration is used,

meaning that the information learned from that condition is redundant to the information contained

in the other conditions. Leaving two data sets out, shows that the 20µM IPTG concentration is

also easily predicted from the remaining data sets. By leaving out one or two data sets, we are able

to characterize the uncertainty in the parameter values. With three different IPTG concentrations,
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Best Fit Parameter Values
IPTG Levels κ0 κ1 β α1 α2 kG

Used for Fit (µM) s−1 µM−1s−1 µM µMs−1 µMs−1 s−1

{5, 10, 20}µM 1.22e-05 3.94e-06 7.76e+02 <1e-10 5.52e-01 5.53e-02
{5, 10, 40}µM 1.74e-05 3.34e-06 7.84e+02 <1e-10 1.66e+00 1.29e-01
{5, 10, 100}µM 1.89e-05 3.43e-06 6.23e+02 <1e-10 7.53e-01 8.54e-02
{5, 20, 40}µM 1.18e-05 3.60e-06 1.72e+03 <1e-10 1.59e+00 7.13e-02
{5, 20, 100}µM 1.38e-05 3.45e-06 1.63e+03 <1e-10 1.64e+00 8.15e-02
{5, 40, 100}µM 1.32e-05 3.39e-06 2.12e+02 <1e-10 3.29e-01 9.18e-02
{10, 20, 40}µM 2.44e-05 2.88e-06 1.03e+04 <1e-10 9.14e+00 7.19e-02
{10, 20, 100}µM 2.43e-05 3.03e-06 8.04e+02 <1e-10 7.17e-01 7.65e-02
{10, 40, 100}µM 2.57e-05 3.07e-06 2.00e+02 <1e-10 2.80e-01 8.79e-02
{20, 40, 100}µM 1.00e-07 4.37e-06 6.87e+02 <1e-10 7.53e-01 7.92e-02
{5, 10, 20, 40}µM 1.43e-05 3.61e-06 2.47e+03 <1e-10 2.33e+00 7.18e-02
{5, 10, 20, 100}µM 1.99e-05 3.22e-06 3.89e+02 <1e-10 3.81e-01 7.52e-02
{5, 10, 40, 100}µM 2.03e-05 3.27e-06 2.06e+02 <1e-10 3.13e-01 9.07e-02
{5, 20, 40, 100}µM 1.38e-05 3.46e-06 6.90e+02 <1e-10 7.94e-01 8.38e-02
{10, 20, 40, 100}µM 2.35e-05 3.05e-06 4.77e+02 <1e-10 4.91e-01 7.89e-02
{5, 10, 20, 40, 100}µM 1.91e-05 3.21e-06 4.88e+02 <1e-10 5.36e-01 8.09e-02

Table 1: Parameter Sets for the various data subsets for the lac regulation model.

the uncertainty on the parameters can be estimated as:

κ0 = 1.62× 10−5 ± 7.75× 10−6 s−1, κ1 = 3.45× 10−6 ± 4.44× 10−7 µM−1s−1,

β = 1.78× 103 ± 3.05× 103 µM, α2 = 1.74× 100 ± 2.65× 100 µMs−1,

kG = 8.30× 10−2 ± 1.91× 10−2 s−1,

where the values are listed as the mean plus or minus one standard deviation. From these results it

is clear that the values of κ0, κ1 and kG are well determined from just three different IPTG concen-

trations, but the other values are more poorly constrained. By adding a fourth IPTG concentration,

the uncertainty drops considerably for all six parameters as follows

κ0 = 1.84× 10−5 ± 4.18× 10−6 s−1, κ1 = 3.32× 10−6 ± 2.20× 10−7 µM−1s−1,

β = 8.47× 102 ± 9.26× 102 µM, α2 = 8.63× 100 ± 8.43× 10−1 µMs−1,

kG = 8.01× 10−2 ± 7.44× 10−3 s−1.

From these values it is clear that the addition of the fourth concentration goes a long way toward

helping to constrain the parameters.

The code “‘FSP Fit Tools” provides a simple graphical user interface with which these different

fits can be obtained and plotted for each of the different subsets of data. In this example, we have
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Figure 14: Identified parameters for the induction of lac with IPTG. A) Parameters identified with every possible
combination of three different IPTG concentration from {5, 10, 20, 40, 100}µM. B) Parameters identified with every
possible combination of four different IPTG concentrations. In each set of bars, the diamonds and the horizontal
dashed lines correspond to the parameter set identified from all five IPTG levels.

considered only a single model for the IPTG induction of the lac operon, and we have obtained a

single parameter set with which this model does a good job of capturing the observed experimental

behavior. Other models will perform better or worse than that presented here. We encourage the

interested reader to use the provided FSP Toolkit codes to propose and test alternate models for

this system. Also included in the online software is an example of identifying a model of the toggle

switch (Section 5.3) from simulated data of the marginal and full distributions at different levels of

UV radiation (see also [22]).

7 Summary

This chapter has presented a few of the phenomena that result from discrete stochastic reactions,

including stochastic amplifications, stochastic damping, stochastic resonance and stochastic switch-

ing. For each of these phenomena, we have used Finite State Projection analysis tools to illustrate

these behaviors. We showed how different mechanisms and parameters lead to different responses in

the face of stochasticity, and we illustrated how it is possible to use information about the variability
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IPTG Levels One Norm Differences from Data
Used for Fit (µM) 5µM 10µM 20µM 40µM 100µM Total
{5, 10, 20}µM 8.35e-01 1.02e+00 1.03e+00 1.69e+00 1.93e+00 6.51e+00
{5, 10, 40}µM 8.47e-01 1.02e+00 1.07e+00 1.64e+00 1.82e+00 6.40e+00
{5, 10, 100}µM 8.57e-01 1.01e+00 1.05e+00 1.65e+00 1.78e+00 6.35e+00
{5, 20, 40}µM 8.34e-01 1.05e+00 1.04e+00 1.65e+00 1.81e+00 6.38e+00
{5, 20, 100}µM 8.36e-01 1.04e+00 1.04e+00 1.65e+00 1.79e+00 6.36e+00
{5, 40, 100}µM 8.34e-01 1.06e+00 1.07e+00 1.64e+00 1.79e+00 6.39e+00
{10, 20, 40}µM 8.85e-01 1.00e+00 1.04e+00 1.65e+00 1.84e+00 6.42e+00
{10, 20, 100}µM 8.91e-01 1.00e+00 1.04e+00 1.66e+00 1.78e+00 6.37e+00
{10, 40, 100}µM 8.97e-01 1.01e+00 1.07e+00 1.65e+00 1.77e+00 6.40e+00
{20, 40, 100}µM 9.20e-01 1.12e+00 1.03e+00 1.65e+00 1.88e+00 6.60e+00
{5, 10, 20, 40}µM 8.39e-01 1.03e+00 1.04e+00 1.66e+00 1.81e+00 6.37e+00
{5, 10, 20, 100}µM 8.59e-01 1.01e+00 1.04e+00 1.66e+00 1.78e+00 6.35e+00
{5, 10, 40, 100}µM 8.60e-01 1.01e+00 1.07e+00 1.65e+00 1.78e+00 6.36e+00
{5, 20, 40, 100}µM 8.35e-01 1.04e+00 1.04e+00 1.65e+00 1.79e+00 6.36e+00
{10, 20, 40, 100}µM 8.80e-01 1.00e+00 1.05e+00 1.65e+00 1.78e+00 6.36e+00
{5, 10, 20, 40, 100}µM 8.55e-01 1.02e+00 1.04e+00 1.65e+00 1.78e+00 6.35e+00

Table 2: One norm errors in the distributions for the various fits. Values shown in regular fonts correspond to the
differences for data used in the fitting procedure, whereas values in bold face correspond to errors in the predicted
distributions.

of individual cells to help infer regulatory mechanisms and parameters from single cell data. For

the readers’ convenience, all examples included in this work can be reproduced using FSP Toolkit

codes, which can be downloaded from http://cnls.lanl.gov/∼munsky or can be requested from the

author at munsky@lanl.gov. .
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